Tóm tắt công thức nguyên hàm

Học Lớp

Administrator
Thành viên BQT
#1

Công thức nguyên hàm là phần quan trọng thuộc giải tích toán 12. Bài viết ngoài hệ thống lý thuyết nguyên hàm đầy đủ còn có bảng 29 công thức nguyên hàm được sắp xếp từ căn bản tới nâng cao


cong-thuc-nguyen-ham-jpg.7021
I. Khái niệm nguyên hàm
  • Cho hàm số f xác định trên K. Hàm số F được gọi là nguyên hàm của f trên K nếu: $F'(x)=f(x)$, ∀x ∈ K
  • Nếu F(x) là một nguyên hàm của f(x) trên K thì họ nguyên hàm của f(x) trên K là: $\int{f(x)}dx=F(x)+C$, C ∈ R.
  • Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
II. Tính chất
  • $\int{f'(x)}dx=f(x)+C$
  • $\int{\left[ f(x)\pm g(x) \right]}dx=\int{f(x)}dx\pm \int{g(x)}dx$
  • $\int{kf(x)}dx=k\int{f(x)}dx(k\ne 0)$
III. Nguyên hàm của một số hàm số thường gặp

1) $\int{k.dx=k.x+C}$

2) $\int{{{x}^{n}}dx=\frac{{{x}^{n+1}}}{n+1}+C}$

3) $\int{\frac{1}{{{x}^{2}}}dx=-\frac{1}{x}+C}$

4) $\int{\frac{1}{x}dx=\ln \left| x \right|+C}$

5) $\int{\frac{1}{{{(ax+b)}^{n}}}dx=-\frac{1}{a(n-1){{(ax+b)}^{n-1}}}+C}$;

6) $\int{\frac{1}{(ax+b)}dx=\frac{1}{a}\ln \left| ax+b \right|+C}$

7) $\int{\sin x.dx=-\cos x+C}$

8) $\int{\cos x.dx=\sin x+C}$

9) $\int{\sin (ax+b)dx=-\frac{1}{a}\cos (ax+b)+C}$

10) $\int{\cos (ax+b)dx=\frac{1}{a}\sin (ax+b)+C}$

11) $\int{\frac{1}{{{\cos }^{2}}x}dx=\int{(1+}t{{g}^{2}}x).dx=tgx+C}$

12) $\int{\frac{1}{{{\sin }^{2}}x}dx=\int{\left( 1+\cot {{g}^{2}}x \right)dx=}-\cot gx+C}$

13) $\int{\frac{1}{{{\cos }^{2}}(ax+b)}dx=\frac{1}{a}tg(ax+b)+C}$

14) $\int{\frac{1}{{{\sin }^{2}}(ax+b)}dx=-\frac{1}{a}\cot g(ax+b)+C}$

15) $\int{{{e}^{x}}dx={{e}^{x}}+C}$ 16) $\int{{{e}^{-x}}dx=-{{e}^{-x}}+C}$

17) $\int{{{e}^{(ax+b)}}dx=\frac{1}{a}{{e}^{(ax+b)}}+C}$

18) $\int{{{(ax+b)}^{n}}.dx=\frac{1}{a}.\frac{{{(ax+b)}^{n+1}}}{n+1}+C}$ (n$\ne $1)

19) $\int{{{a}^{x}}dx=\frac{{{a}^{x}}}{\ln a}+C}$ 20) $\int{\frac{1}{{{x}^{2}}+1}dx=arctgx+C}$

21) $\int{\frac{1}{{{x}^{2}}-1}dx=\frac{1}{2}\ln \left| \frac{x-1}{x+1} \right|+C}$

22) $\int{\frac{1}{{{x}^{2}}+{{a}^{2}}}dx=\frac{1}{a}arctg\frac{x}{a}+C}$

23) $\int{\frac{1}{{{x}^{2}}-{{a}^{2}}}dx=\frac{1}{2a}\ln \left| \frac{x-a}{x+a} \right|+C}$

24) $\int{\frac{1}{\sqrt{1-{{x}^{2}}}}dx=\arcsin x+C}$

25) $\int{\frac{1}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx=\arcsin \frac{x}{a}+C}$

26) $\int{\frac{1}{\sqrt{{{x}^{2}}\pm 1}}dx=\ln \left| x+\sqrt{{{x}^{2}}\pm 1} \right|+C}$

27) $\int{\frac{1}{\sqrt{{{x}^{2}}\pm {{a}^{2}}}}dx=\ln \left| x+\sqrt{{{x}^{2}}\pm {{a}^{2}}} \right|+C}$

28) $\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx=\frac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\frac{{{a}^{2}}}{2}\arcsin \frac{x}{a}+C}$

29) $\int{\sqrt{{{x}^{2}}\pm {{a}^{2}}}dx=\frac{x}{2}\sqrt{{{x}^{2}}\pm {{a}^{2}}}\pm \frac{{{a}^{2}}}{2}\ln \left| x+\sqrt{{{x}^{2}}\pm {{a}^{2}}} \right|+C}$
 
Sửa lần cuối:

Bình luận bằng Facebook