Kĩ năng tổng hợp và loại nghiệm bằng đường tròn lượng giác

Học Lớp

Administrator
Thành viên BQT
Tìm và biểu diễn các nghiệm của phương trình sau trên đường tròn lượng giác:
a) \(\sin \left( {2x + \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{3} = \dfrac{\pi }{6} + k2\pi \\2x + \dfrac{\pi }{3} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{{12}} + k\pi \\x = \dfrac{\pi }{4} + k\pi \end{array} \right.,k \in \mathbb{Z}\).
Biểu diễn nghiệm trên đường tròn đơn vị:
nghiệm của đường tròn lượng giác đơn vị.JPG

Ở đó, hai điểm \({M_1},{M_2}\) biểu diễn góc \(x = \dfrac{\pi }{4} + k\pi \) và hai điểm \({M_3},{M_4}\) biểu diễn góc \(x = - \dfrac{\pi }{{12}} + k\pi \).

b) \(\dfrac{{2\cos 2x}}{{1 - \sin 2x}} = 0\)
Điều kiện: \(1 - \sin 2x \ne 0 \Leftrightarrow \sin 2x \ne 1\) \( \Leftrightarrow 2x \ne \dfrac{\pi }{2} + k2\pi \Leftrightarrow x \ne \dfrac{\pi }{4} + k\pi \).
Phương trình \( \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \dfrac{\pi }{2} + k\pi \) \( \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\).
Biểu diễn trên đường tròn đơn vị:
đường tròn lượng giác đơn vị.JPG

Các điểm biểu diễn \(x = \dfrac{\pi }{4} + k\pi \) là \({M_1},{M_2}\) nhưng điều kiện là \(x \ne \dfrac{\pi }{4} + k\pi \) nên hai điểm này không lấy.
Các điểm biểu diễn \(x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\) là \({M_1},{M_2},{M_3},{M_4}\) nhưng do không lấy hai điểm \({M_1},{M_2}\) nên các điểm biểu diễn nghiệm chỉ còn \({M_3},{M_4}\).
Dễ thấy hai điểm này đối xứng nhau qua \(O\) và \(\widehat {AO{M_4}} = - \dfrac{\pi }{4}\) nên nghiệm của phương trình là \(x = - \dfrac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).

c) \(\dfrac{{\sqrt 3 \cot 2x - 1}}{{2\cos x + 1}} = 0\)
Điều kiện: \(2\cos x + 1 \ne 0 \Leftrightarrow \cos x \ne - \dfrac{1}{2}\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{{2\pi }}{3} + k2\pi \\x \ne - \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).
Khi đó phương trình \( \Leftrightarrow \sqrt 3 \cot 2x - 1 = 0 \Leftrightarrow \cot 2x = \dfrac{1}{{\sqrt 3 }}\) \( \Leftrightarrow \cot 2x = \cot \dfrac{\pi }{3} \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi \) \( \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}\).
Biểu diễn trên đường tròn đơn vị:
đường tròn lượng giác.JPG

Ở đó, điểm M biểu diễn góc \(x = \dfrac{{2\pi }}{3} + k2\pi \) và điểm \({M_3}\) biểu diễn góc \(x = - \dfrac{{2\pi }}{3} + k2\pi \), ta đánh dấu đỏ thể hiện không lấy hai điểm đó (do điều kiện xác định).
Các điểm \({M_1},{M_2},{M_3},{M_4}\) là các điểm biểu diễn nghiệm \(x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2}\), trong đó không lấy điểm \({M_3}\) do điều kiện xác định.
Do đó, chỉ còn lại hai điểm \({M_1},{M_2}\) (với \(\widehat {AO{M_1}} = \dfrac{\pi }{6}\)) biểu diễn góc \(x = \dfrac{\pi }{6} + k\pi \) và điểm \({M_4}\) biểu diễn góc \(x = - \dfrac{\pi }{3} + k2\pi \) (với \(\widehat {AO{M_4}} = - \dfrac{\pi }{3}\)).
Vậy phương trình có nghiệm \(x = \dfrac{\pi }{6} + k\pi \) hoặc \(x = - \dfrac{\pi }{3} + k2\pi \) với \(k \in \mathbb{Z}\).
 
Sửa lần cuối: