Hình thang. Diện tích hình thang

Học Lớp

Administrator
Thành viên BQT
#1
Hình thang trong mặt phẳng là hình có 4 cạnh trong đó có 2 cạnh đối song song với nhau.

1. Hình thang

a) Cấu trúc

Hình thang \(ABCD\) có:
hinh-thang-png.7350

- Cạnh đáy \(AB\) và cạnh đáy \(DC\). Cạnh bên \(AD\) và cạnh bên \(BC\).
- Hai cạnh đáy là hai cạnh đối diện song song.
Hình thang có một cặp cạnh đối diện song song.
Chú ý: Hình thang có một cạnh bên vuông góc với hai đáy gọi là hình thang vuông.
hinh-thang-co-mot-canh-ben-vuong-goc-voi-hai-day-goi-la-hinh-thang-vuong-png.7351

b) Đường cao của hình thang


duong-cao-cua-hinh-thang-png.7352

2. Diện tích hình thang


Quy tắc: Diện tích hình thang bằng tổng độ dài hai đáy nhân với chiều cao (cùng một đơn vị đo) rồi chia cho \(2\).
dien-tich-hinh-thang-png.7353

Ví dụ 1: Tính diện tích hình thang biết độ dài hai đáy lần lượt là \(18cm\) và \(14cm\); chiều cao là \(9cm\).
Phương pháp giải: Độ dài hai đáy và chiều cao đã có cùng đơn vị đo nên để tính diện tích ta lấy tổng độ dài hai đáy nhân với chiều cao rồi chia cho \(2\).
Cách giải​
Diện tích hình thang đó là: \(\dfrac{{(18 + 14) \times 9}}{2} = 144\left( {c{m^2}} \right)\)
Đáp số: \(144c{m^2}\).

Ví dụ 2: Tính diện tích hình thang biết độ dài hai đáy lần lượt là \(4m\) và \(25dm\); chiều cao là \(32dm\).
Phương pháp giải: Độ dài hai đáy và chiều cao chưa cùng đơn vị đo nên ta đổi về cùng đơn vị đó, \(4m = 40dm\), sau đó để tính diện tích ta lấy tổng độ dài hai đáy nhân với chiều cao rồi chia cho \(2\).
Cách giải​
Đổi \(4m = 40dm\)
Diện tích hình thang đó là: \(\dfrac{{(40 + 25) \times 32}}{2} = 1040\left( {d{m^2}} \right)\)
Đáp số: \(1040d{m^2}\)

3. Một số dạng bài tập

Dạng 1: Tính diện tích hình thang khi biết độ dài hai đáy và chiều cao
Phương pháp: Áp dụng công thức: \(S = \dfrac{{(a + b) \times h}}{2}\) hoặc \(S = (a + b) \times h:2\)
(\(S\) là diện tích, \(a,\,b\) là độ dài các cạnh đáy, \(h\) là chiều cao)

Dạng 2: Tính tổng độ dài hai đáy khi biết diện tích và chiều cao
Phương pháp: Từ công thức tính diện tích \(S = \dfrac{{(a + b) \times h}}{2}\) hoặc \(S = (a + b) \times h:2\), ta có công thức tính độ dài hai đáy như sau: \(a + b = \dfrac{{S \times 2}}{h}\) hoặc \(a + b = S \times 2:h\).
Lưu ý: Đề bài thường cho hiệu của hai đáy hoặc tỉ số giữa hai đáy và yêu cầu tìm độ dài của mỗi đáy. Học sinh cần nhớ hai dạng toán tổng – hiệu và tổng – tỉ.

Dạng 3: Tính chiều cao khi biết diện tích và độ dài hai đáy
Phương pháp: Từ công thức tính diện tích \(S = \dfrac{{(a + b) \times h}}{2}\) hoặc \(S = (a + b) \times h:2\), ta có công thức tính chiều cao như sau: \(h = \dfrac{{S \times 2}}{{a + b}}\) hoặc \(h = S \times 2 : (a + b)\).

Dạng 4: Toán có lời văn
Phương pháp: Đọc kĩ đề bài, xác định dạng toán trong bài rồi giải bài toán đó.
 
Sửa lần cuối:

Bình luận bằng Facebook

Chủ đề tương tự