Toán 12 Giải bài tập sgk toán lớp 12 bài số 1 trang 89 Bất phương trình mũ và bất phương trình lôgarit

Học Lớp

Administrator
Thành viên BQT
#1
Giải bài tập sgk toán lớp 12 bài số 1 trang 89 Bất phương trình mũ và bất phương trình lôgarit
Đề bài
Giải các bất phương trình mũ:
a) \(2^{-x^{2}+3x}< 4\);
b) \(\left ( \frac{7}{9} \right )^{2x^{2}-3x} ≥ \frac{9}{7}\);
c) \({3^{x + 2}} +{3^{x - 1}} \le 28\);
d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\).

Lời giải bài tập chi tiết​

\(\begin{array}{l}a)\,\,\,{2^{ - {x^2} + 3x}} < 4\\\Leftrightarrow {2^{ - {x^2} + 3x}} < {2^2}\\\Leftrightarrow - {x^2} + 3x < 2\\\Leftrightarrow {x^2} - 3x + 2 > 0\\\Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right.\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)

\(\begin{array}{l}b)\,\,\,{\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge \frac{9}{7}\\\Leftrightarrow {\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge {\left( {\frac{7}{9}} \right)^{ - 1}}\\\Leftrightarrow 2{x^2} - 3x \le - 1\\\Leftrightarrow 2{x^2} - 3x + 1 \le 0\\\Leftrightarrow \frac{1}{2} \le x \le 1\end{array}\).

Vậy tâp nghiệm của bất phương trình là: \(S = \left[ {\frac{1}{2};1} \right]\).

\(\begin{array}{l}c)\,\,\,\,{3^{x + 2}} + {3^{x - 1}} \le 28\\\Leftrightarrow {3^{x - 1}}{.3^3} + {3^{x - 1}} \le 28\\\Leftrightarrow {3^{x - 1}}\left( {{3^3} + 1} \right) \le 28\\\Leftrightarrow {3^{x - 1}}.28 \le 28\\\Leftrightarrow {3^{x - 1}} \le 1\\\Leftrightarrow {3^{x - 1}} \le {3^0}\\\Leftrightarrow x - 1 \le 0\\\Leftrightarrow x \le 1\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right]\).

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\)

Đặt \(t = 2^x >0\), bất phương trình đã cho trở thành

\(\begin{array}{l}{t^2} - 3t + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}t > 2\\t < 1\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}{2^x} > 2\\{2^x} < 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} > {2^1}\\{2^x} < {2^0}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < 0\end{array} \right.\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\).
 

Bài mới