Giả sử tích phân \(\int\limits_0^1 {x.\ln {{\left( {2x + 1} \right)}^{2017}}{\rm{d}}x} = a + \frac{b}{c}\ln 3\). Với phân số \(\frac{b}{c}\) tối giản

Học Lớp

Administrator
Thành viên BQT
Nguyên hàm | tích phân | nguyên hàm và tích phân |
Tính Nguyên Hàm Và Tích Phân Bằng Phương Pháp từng phần

Giả sử tích phân \(\int\limits_0^1 {x.\ln {{\left( {2x + 1} \right)}^{2017}}{\rm{d}}x} = a + \frac{b}{c}\ln 3\). Với phân số \(\frac{b}{c}\) tối giản. Tính tổng a+b.
A. \(b + c = 6057.\)
B. \(b + c = 6059.\)
C. \(b + c = 6058.\)
D. \(b + c = 6056.\)
 

Học Lớp

Administrator
Thành viên BQT
Học lớp hướng dẫn giải
Ta có \(I = \int\limits_0^1 {x.\ln {{\left( {2x + 1} \right)}^{2017}}{\rm{d}}x} = 2017\int\limits_0^1 {x.\ln \left( {2x + 1} \right){\rm{d}}x} \).
Đặt \(\left\{ \begin{array}{l}u = \ln \left( {2x + 1} \right)\\{\rm{d}}v = x{\rm{d}}x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\rm{d}}u = \frac{2}{{2x + 1}}{\rm{d}}x\\v = \frac{{{x^2}}}{2} - \frac{1}{8}\end{array} \right.\)
Do đó \(\int\limits_0^1 {x.\ln \left( {2x + 1} \right){\rm{d}}x} = \left. {\left( {\ln \left( {2x + 1} \right)} \right)\left( {\frac{{{x^2}}}{2} - \frac{1}{8}} \right)} \right|_0^1 - \int\limits_0^1 {\left( {\left( {\frac{{{x^2}}}{2} - \frac{1}{8}} \right)\frac{2}{{2x + 1}}} \right){\rm{d}}x} \)
\( = \left. {\frac{3}{8}\ln 3 - \left( {\frac{{{x^2} - x}}{4}} \right)} \right|_0^1 = \frac{3}{8}\ln 3\)
\( \Rightarrow I = \int\limits_0^1 {x.\ln {{\left( {2x + 1} \right)}^{2017}}{\rm{d}}x} = 2017\left( {\frac{3}{8}\ln 3} \right) = \frac{{6051}}{8}\ln 3.\)
Khi đó \(b + c = 6059.\)