Dạng 1: Tìm quỹ tích của một điểm

Học Lớp

Administrator
Thành viên BQT
#1
Bài toán: Cho hình H và một điểm A thuộc hình H thay đổi . Tìm quỹ tích của điểm M khi A thay đổi .
Cách giải
  • Xét một vị trí bất kỳ của A và M . Sau dó tìm trên H có một đường thẳng cố định là trung trực của đoạn thẳng AM ( Chính là trục đối xứng ).
  • Nếu A chạy trên một đường (C ) nào đó , theo tính chất của phép dối xứng trục , thì M chạy trên đường (C’) là ảnh của (C ) qua phép đối xứng trục .

Ví dụ 1. ( Bài 10-tr13-HH11NC ) .
Cho hai điểm B,C cố định nằm trên đường tròn (O;R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H nằm trên một đường tròn cố định .
Giải​
- Vẽ hình . Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’
- Chứng minh IH=IH’ . Thật vậy
Ta có : \(\angle A = \angle BCH'\) ( Góc nội tiếp chẵn cung BH’ ).(1)
Mặt khác : \(\left\{ \begin{array}{l}CH \bot AB\\CI \bot AH'\end{array} \right. \Rightarrow \angle A = \angle BCH\left( 2 \right)\). Từ (1) và (2) suy ra : \(\angle BCH = \angle BCH'\)
Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC
- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C .
* Chú ý : Ta còn có cách khác chứng minh H và H’ đối xứng nhau qua BC .
- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .
- A’H’ song song với BC ( vì cùng vuông góc với AH )
- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.

Ví dụ 2. Cho tam giác ABC có trực tâm H
a/ Chứng minh rằng các đường tròn ngoại tiếp các tam giác HAB,HBC,HCA có bán kính bằng nhau
b/ Gọi \({O_1},{O_2},{O_3}\) là tâm các đường tròn nói trên . Chứng minh rằng đường tròn đi qua ba điểm \({O_1},{O_2},{O_3}\) bằng đường tròn ngoại tiếp tam giác ABC .
Giải​
a/ Giả sử \({O_1}\) là tâm của đường tròn ngoại tiếp tam giác HBC , thì theo bài taons của ví dụ 1 \({O_1}\) chính là ảnh của (O) qua phép đối xứng trục BC . Cho nên bán kính của chúng bằng nhau . Tương tự hai đường tròn ngoại tiếp của hai tam giác còn lại có bán kính bằng bán kính của (O) .
b/ Ta hoàn toàn chứng minh được \({O_1},{O_2},{O_3}\) là các ảnh của O qua phép đối xứng trục BC,CA,AB . Vì vậy bán kính các đường tròn này bằng nhau . Mặt khác ta chứng minh tam giác ABC bằng tam giác \({O_1}{O_2}{O_3}\).