Toán 12 Bảng công thức nguyên hàm hay và khó

Học Lớp

Administrator
Thành viên BQT
Nguyên hàm là gì?
Hàm số \(F_{(x)}\) được gọi là nguyên hàm của hàm số \(f_{(x)}\) trên (a;b) nếu \(F’_{(x)} = f_{(x)}\)

Ví dụ:
Hàm số \(y = x^{2}\) là nguyên hàm của hàm số \(y = 2x\) trên \(\mathbb{R}\) vì \((x^{2})’ = 2x\)
Hàm số \(y = \ln x\) là nguyên hàm của hàm số \(y = \frac{1}{x}\) trên \((0,+\infty )\) vì \((\ln x)’ = \frac{1}{x}\)

Tính chất của nguyên hàm
\((\int f_{(x)}dx)’ = f_{x}\)
\(\int a.f_{(x)}dx = a.\int f_{(x)}dx\)
\(\int \left [ f_{(x)} \pm g_{(x)} \right ]dx = \int f_{(x)}dx \pm \int g_{(x)}dx\)

Hệ thống nguyên hàm của hàm số cơ bản
Nguyên hàm của các hàm số sơ cấp Nguyên hàm của các hàm số hợpu = u(x)
Lũy thừa \(\int dx = x + C\) \(\int du = u + C\)
\(\int x^{a }dx = \frac{x^{a + 1}}{a + 1} + C\) \(\int u^{a }dx = \frac{u^{a + 1}}{a + 1} + C\)
Mũ logarit \(\int {\frac{{dx}}{x} = \ln \left| x \right| + C} \,\,\left( {x \ne 0} \right)\) \(\int {\frac{{du}}{u} = \ln \left| u \right| + C} \,\,\left( {x \ne 0} \right)\)
\(\int {{e^x}dx = {e^x} + C}\) \(\int {{e^u}dx = {e^u} + C}\)
\(\int {{a^x}dx = \frac{{{a^x}}}{{\ln a}} + C\,\,\left( {0 < a \ne 1} \right)}\) \(\int {{a^u}du = \frac{{{a^u}}}{{\ln a}} + C\,\,\left( {0 < a \ne 1} \right)}\)
Lượng giác \(\int {\cos xdx = \sin x + C}\) \(\int {\cos udu = \sin u + C}\)
\(\int {\sin xdx = – \cos x + C}\) \(\int {\sin udu = – \cos u + C}\)
\(\int {\frac{{dx}}{{\sin x}}} = \ln \left| {\tan \frac{x}{2}} \right| + C\) \(\int {\frac{{du}}{{\sin u}}} = \ln \left| {\tan \frac{u}{2}} \right| + C\)
\(\int {\frac{{dx}}{{\cos x}}} = \ln \left| {\tan \left( {\frac{x}{2} + \frac{\pi }{4}} \right)} \right| + C\) \(\int {\frac{{du}}{{\cos u}}} = \ln \left| {\tan \left( {\frac{u}{2} + \frac{\pi }{4}} \right)} \right| + C\)
\(\int {\frac{{dx}}{{{{\cos }^2}x}} = \tan x + C}\) \(\int {\frac{{du}}{{{{\cos }^2}u}} = \tan u + C}\)
\(\int {\frac{{dx}}{{{{\sin }^2}x}} = – \cot x + C}\) \(\int {\frac{{du}}{{{{\sin }^2}u}} = – \cot u + C}\)
\(\int \cot xdx = \ln \left | sinx \right | + C\) \(\int \cot udu = \ln \left | sinu \right | + C\)
\(\int \tan xdx = -\ln \left | \cos x \right | + C\) \(\int \tan udu = -\ln \left | \cos u \right | + C\)
Căn thức \(\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C\) \(\int \frac{du}{\sqrt{u}} = 2\sqrt{u} + C\)
\(\int \sqrt[n]{x}dx = \frac{n}{n+1}\sqrt[n]{x^{n+1}} + C\) \(\int \sqrt[n]{u}du = \frac{n}{n+1}\sqrt[n]{u^{n+1}} + C\)
\(\int \frac{dx}{\sqrt{x^{2}\pm a}} = \ln \left | x + \sqrt{x^{2}\pm a} \right | + C\) \(\int \frac{du}{\sqrt{u^{2}\pm a}} = \ln \left | u + \sqrt{u^{2}\pm a} \right | + C\)
\(\int \frac{dx}{\sqrt{a^{2} – x^{2}}} = \arcsin \frac{x}{a} + C\) \(\int \frac{du}{\sqrt{a^{2} – u^{2}}} = \arcsin \frac{u}{a} + C\)
\(\int {\frac{{xdx}}{{\sqrt {{x^2} \pm {a^2}} }}} = \sqrt {{x^2} \pm {a^2}} + C\) \(\int {\frac{{udu}}{{\sqrt {{u^2} \pm {a^2}} }}} = \sqrt {{u^2} \pm {a^2}} + C\)
\(\int {\sqrt {{x^2} \pm {a^2}} } dx = \frac{x}{2}\sqrt {{x^2} + {a^2}} \pm \frac{a}{2}\ln \left| {x + \sqrt {{x^2} \pm {a^2}} } \right| + C\) \(\int {\sqrt {{u^2} \pm {a^2}} } du = \frac{u}{2}\sqrt {{u^2} + {a^2}} \pm \frac{a}{2}\ln \left| {u + \sqrt {{u^2} \pm {a^2}} } \right| + C\)
Phân thức hữu tỷ \(\int \frac{dx}{x^{2}} = -\frac{1}{x} + C\) \(\int \frac{du}{u^{2}} = -\frac{1}{u} + C\)
\(\int \frac{dx}{x^{n}} = \frac{-1}{(n – 1)x^{n – 1}} + C\) \(\int \frac{du}{u^{n}} = \frac{-1}{(n – 1)u^{n – 1}} + C\)
\(\int \frac{dx}{x^{2} – a^{2}} = \frac{1}{2a}\ln \left | \frac{x – a}{x + a} \right | + C\) \(\int \frac{du}{u^{2} – a^{2}} = \frac{1}{2a}\ln \left | \frac{u – a}{u + a} \right | + C\)
\(\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a}\arctan \frac{x}{a} + C\) \(\int \frac{du}{u^{2} + a^{2}} = \frac{1}{a}\arctan \frac{u}{a} + C\)
\(\int {\frac{{xdx}}{{{x^2} \pm {a^2}}}} = \frac{1}{2}\ln \left| {{x^2} \pm {a^2}} \right| + C\) \(\int {\frac{{udu}}{{{u^2} \pm {a^2}}}} = \frac{1}{2}\ln \left| {{u^2} \pm {a^2}} \right| + C\)
 
Sửa lần cuối: