Học Lớp

Administrator
Thành viên BQT
Câu 1
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{{x^3} - 3}}{{x - 2}}\) trên đoạn \(\left[ { - 1;\frac{3}{2}} \right]\). Mệnh đề nào sau đây là đúng?
A. \(M + m = \frac{8}{3}\)
B. \(M + m = \frac{4}{3}\)
C. \(M + m = \frac{7}{2}\)
D. \(M + m = \frac{16}{3}\)
Ta có
\(y = \frac{{{x^2} - 3}}{{x - 2}} \Rightarrow y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}};y' = 0\)
\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 1}\\ {x = 3 \notin \left[ { - 1;\frac{3}{2}} \right]} \end{array}} \right.\)
Tính giá trị \(\left\{ {\begin{array}{*{20}{c}} {y\left( { - 1} \right) = - \frac{2}{3}}\\ {f\left( {\frac{3}{2}} \right) = \frac{3}{2}}\\ {y\left( 3 \right) = 6} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {m = - \frac{2}{3}}\\ {M = 6} \end{array}} \right. \Rightarrow M + m = \frac{{16}}{3}.\)
Câu 2
Cho các số thực x, y thỏa mãn \(x + y = 2\left( {\sqrt {x - 3} + \sqrt {y + 3} } \right)\). Tìm giá trị nhỏ nhất của biểu thức \(P = 4\left( {{x^2} + {y^2}} \right) + 15xy.\)
A. \(\min P = - 83\)
B. \(\min P = - 63\)
C. \(\min P = - 80\)
D. \(\min P = -91\)
Ta có \(x + y = 2\left( {\sqrt {x - 3} + \sqrt {y + 3} } \right)\) \(\Leftrightarrow {\left( {x + y} \right)^2} = 4\left( {x + y} \right) + 8\sqrt {x - 3} .\sqrt {y + 3} \ge 4\left( {x + y} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x + y \ge 4}\\ {x + y \le 0} \end{array}} \right.\)
Mặt khác \(x + y = 2\left( {\sqrt {x - 3} + \sqrt {y + 3} } \right) \le 2\sqrt {2\left( {x + y} \right)} \Leftrightarrow x + y \le 8 \Rightarrow x + y \in \left[ {4;8} \right]\)
Xét biểu thức \(P = 4\left( {{x^2} + {y^2}} \right) + 15xy = 4{\left( {x + y} \right)^2} + 7xy\)
Đặt \(t = x + y \in \left[ {4;8} \right] \Rightarrow P = 4{t^2} + 7xy\).
Lại có:
\(\begin{array}{l} \left( {x + 3} \right)\left( {y + 3} \right) \ge 0 \Leftrightarrow xy \ge - 3\left( {x + y} \right) - 9\\ \Rightarrow P \ge 4{\left( {x + y} \right)^2} - 21\left( {x + y} \right) - 63 = 4{t^2} - 21t - 63 \end{array}$\)
Xét hàm số \(f\left( t \right) = 4{t^2} - 21t - 63\) trên đoạn [4;8] suy ra \({P_{\min }} = f\left( 7 \right) = - 83\)
Câu 3
Tìm giá trị lớn nhất của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên \(\left[ {1;{e^3}} \right].\)
A. \(\mathop {\max }\limits_{\left[ {1;{e^3}} \right]} y = \frac{{{{\ln }^2}2}}{2}\)
B. \(\mathop {\max }\limits_{\left[ {1;{e^3}} \right]} y = \frac{4}{{{e^2}}}\)
C. \(\mathop {\max }\limits_{\left[ {1;{e^3}} \right]} y = \frac{9}{{{e^2}}}\)
D. \(\mathop {\max }\limits_{\left[ {1;{e^3}} \right]} y = \frac{1}{e}\)
Xét hàm số \(y = f\left( x \right) = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\), ta có \(f'\left( x \right) = \frac{{2\ln x.\frac{1}{x}.x - {{\ln }^2}x}}{{{x^2}}};\forall x \in \left[ {1;{e^3}} \right]\)
Phương trình \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {\ln x = 0}\\ {\ln x = 2} \end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 1}\\ {x = {e^2}} \end{array}} \right.\).
Tính giá trị \(f\left( 1 \right) = 0;f\left( {{e^2}} \right) = \frac{4}{{{e^2}}};f\left( {{e^3}} \right) = \frac{9}{{{e^3}}}\)
Vậy giá trị lớn nhất của hàm số y=f(x) là \(\mathop {\max }\limits_{\left[ {1;{e^2}} \right]} = \frac{4}{{{e^2}}}\).
Câu 4
Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} - 1\) trên đoạn [-3;2].
A. \(\mathop {\min }\limits_{\left[ { - 3;2} \right]} y = 8\)
B. \(\mathop {\min }\limits_{\left[ { - 3;2} \right]} y = - 1\)
C. \(\mathop {\min }\limits_{\left[ { - 3;2} \right]} y = 3\)
D. \(\mathop {\min }\limits_{\left[ { - 3;2} \right]} y = - 3\)
Ta có \(y' = \left( {{x^2} - 1} \right)' = 2x \Rightarrow y' = 0 \Leftrightarrow x = 0 \Rightarrow \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {y\left( { - 3} \right) = 8}\\ {y\left( 0 \right) = - 1} \end{array}}\\ {y\left( 2 \right) = 3} \end{array}} \right.\)
\(\Rightarrow \mathop {\min }\limits_{\left[ { - 3;2} \right]} y = - 1.\)
Câu 5
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 3\sqrt {x - 1} + 4\sqrt {5 - x} .\) Tính M+m.
A. \(M + m = 16\)
B. \(M + m = \frac{{12 + 3\sqrt 6 + 4\sqrt {10} }}{2}\)
C. \(M + m = \frac{{16 + 3\sqrt 6 + 4\sqrt {10} }}{2}\)
D. \(M + m = 18\)
Hàm số xác định khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}} {x - 1 \ge 0}\\ {5 - x \ge 0} \end{array}} \right. \Leftrightarrow 1 \le x \le 5 \Rightarrow D = \left[ {1;5} \right]\)
Khi đó \(y' = \left( {3\sqrt {x - 1} + 4\sqrt {5 - x} } \right)' = \frac{3}{{2\sqrt {x - 1} }} - \frac{2}{{\sqrt {5 - x} }}\)
\(\Rightarrow y' = 0 \Leftrightarrow \frac{3}{{2\sqrt {x - 1} }} - \frac{2}{{\sqrt {5 - x} }} = 0 \Leftrightarrow x = \frac{{61}}{{25}}\)
Suy ra \(\left\{ {\begin{array}{*{20}{c}} {y\left( 1 \right) = 8}\\ {y\left( {\frac{{61}}{{25}}} \right) = 10}\\ {y\left( 5 \right) = 6} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {M = \max y = y\left( {\frac{{61}}{{25}}} \right) = 10}\\ {m = Miny = y\left( 5 \right) = 6} \end{array}} \right. \Rightarrow M + m = 16.\)
Câu 6
Tìm giá trị lớn nhất của hàm số \(y = \frac{{{x^2} - 3x}}{{x + 1}}\) trên đoạn [0;3].
A. 1
B. 0
C. 3
D. 2
Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} - 3x}}{{x + 1}}\) trên đoạn [0;3] ta có: \(f'(x)=\frac{x^2+2x-3}{(x+1)^2}; \forall x\in [0;3]\)
Phương trình \(f'(x)=0 \Leftrightarrow \left\{ \begin{array}{l} 0 \le x \le 3\\ {x^2} + 2x - 3 = 0 \end{array} \right. \Leftrightarrow x = 1.\)
Tính giá trị \(f\left( 0 \right) = 0,\,\,f\left( 1 \right) = - 1,\,\,f\left( 3 \right) = 0.\)
Vậy giá trị lớn nhất của hàm số trên đoạn [0;3] là 0.
Câu 7
Tìm giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} - 3x + 3}}{{x - 1}}\) trên đoạn \(\left[ { - 2;\frac{1}{2}} \right].\)
A. \(M = - \frac{7}{2}\)
B. \(M = - 3\)
C. \(M = 1\)
D. \(M = -\frac{13}{3}\)
Ta có: \(y = \frac{{{x^2} - 3x + 3}}{{x - 1}} = \frac{{{x^2} - x - 2x + 2 + 1}}{{x - 1}} = x - 2 + \frac{1}{{x - 1}}\)
\(\Rightarrow y' = 1 - \frac{1}{{{{(x - 1)}^2}}}\)
\(y'=0\Leftrightarrow x=0\)
Tính \(y( - 2) = \frac{{ - 13}}{3};y(0,5) = \frac{{ - 7}}{2};y(0) = - 3\)
Vậy giá trị lớn nhất sẽ là M=-3.
Câu 8
Một đường dây điện được nối từ một nhà máy điện trên đất liền ở vị trí A đến một hòn đảo ở vị trí C theo đường gấp khúc ASC(S là một vị trí trên đất liền) như hình vẽ. Biết BC=1 km, AB= 4 km, 1km dây điện đặt dưới nước có giá 5000 USD, 1 km dây điện đặt dưới đất có giá 3000 USD. Hỏi điểm S cách A bao nhiêu để khi mắc dây điện từ A qua S rồi đến C là ít tốn kém nhất.
Một đường dây điện được nối từ một nhà máy điện.png

A. \(\frac{{15}}{4}km\)
B. \(\frac{{13}}{4}km\)
C. \(\frac{{10}}{4}km\)
D. \(\frac{{19}}{4}km\)
Gọi SA=x, ta có: BS=4-x.
Suy ra:\(SC = \sqrt {B{S^2} + B{C^2}} = \sqrt {{{(4 - x)}^2} + {1^2}}\)
Số tiền cần để mắc là:\(5.\sqrt {{{(4 - x)}^2} + 1} + 3x\) (nghìn USD)
Xét hàm số: \(f(x) = 5.\sqrt {{{(4 - x)}^2} + 1} + 3x,0 < x < 4\)
Ta có: \(f'(x) = 5.\frac{{\left[ {{{\left( {4 - x} \right)}^2} + 1} \right]'}}{{2\sqrt {{{(4 - x)}^2} + 1} }} + 3 = \frac{{5(x - 4)}}{{\sqrt {{{(4 - x)}^2} + 1} }} + 3\)
\(f'(x) = \frac{{5(x - 4) + 3\sqrt {{{(4 - x)}^2} + 1} }}{{\sqrt {{{(4 - x)}^2} + 1} }} \Leftrightarrow x = \frac{{13}}{4}\)
Bảng biến thiên:
giá trị nhỏ nhất của hàm số.png

Vậy hàm số đạt giá trị nhỏ nhất tại \(x = \frac{{13}}{4}\)
Câu 9
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {3^{2{{\sin }^2}x}} + {3^{{{\cos }^2}x}}.\) Tính giá trị biểu thức \(P = M + {\left( {\frac{{2m}}{9}} \right)^3}.\)
A. \(P = \frac{{10}}{3}.\)
B. \(P = 1.\)
C. \(P = \frac{{35}}{3}.\)
D. \(P = \frac{{32}}{3}.\)
Ta có \(f\left( x \right) = {3^{2{{\sin }^2}x}} + {3^{{\rm{co}}{{\rm{s}}^2}x}} = {3^{2{{\sin }^2}x}} + {3^{1 - {{\sin }^2}x}} = 3 = {({3^{{{\sin }^2}x}})^2} + \frac{3}{{{3^{{{\sin }^2}x}}}}\)
Đặt \(t = {3^{{{\sin }^2}x}}\) do \(0 \le {\sin ^2}x \le 1 \Rightarrow 1 \le {3^{{{\sin }^2}x}} \le 3 \Rightarrow t \in \left( {1;3} \right)\) khi đó \({({3^{{{\sin }^2}x}})^2} + \frac{3}{{{3^{{{\sin }^2}x}}}} = {t^2} + \frac{3}{t}\)
Xét hàm số \(g\left( t \right) = {t^2} + \frac{3}{t}\) với \(t \in \left( {1;3} \right).\)
Ta có \(g'\left( t \right) = 2t - \frac{3}{{{t^2}}};g'\left( t \right) = 0 \Leftrightarrow t = \sqrt(3){{\frac{3}{2}}}\)
Ta có \(f\left( 1 \right) = 4;f\left( 3 \right) = 10;f\left( {\sqrt(3){{\frac{3}{2}}}} \right) = \sqrt(3){{\frac{{243}}{4}}} \Rightarrow M = 10;m = \sqrt(3){{\frac{{243}}{4}}} \Rightarrow P = \frac{{32}}{3}.\)
Câu 10
Tìm giá trị lớn nhất của hàm số \(y = {\cos ^4}x + {\sin ^2}x + \frac{1}{2}\sin x\cos x.\)
A. \({\rm{max y = }}\frac{7}{8}.\)
B. \({\rm{max y = }}\frac{5}{4}.\)
C. \({\rm{max y = }}\frac{{17}}{{16}}.\)
D. \({\rm{max y = }}\frac{{15}}{{16}}.\)
Ta có \(y = {\left( {\frac{{1 + \cos 2x}}{2}} \right)^2} + \frac{{1 - \cos 2x}}{2} + \frac{1}{4}\sin 2x\)
\( = \frac{{1 + 2\cos 2x + {{\cos }^2}2x}}{4} + \frac{{1 - \cos 2x}}{2} + \frac{1}{4}\sin 2x\)
\( = \frac{3}{4} + \frac{{{{\cos }^2}2x + \sin 2x}}{4} = \frac{3}{4} + \frac{{1 - {{\sin }^2}2x + \sin 2x}}{4}\)
Xét hàm số \(f(x) = 1 - {\sin ^2}2x + \sin 2x\)
Đặt \(t = \sin 2x,\) ta có hàm số: \(g(t) = 1 - {t^2} + t,t \in \left( { - 1;1} \right)\)
\(\begin{array}{l}g'(t) = - 2t + 1\\g'(t) = 0 \Leftrightarrow t = \frac{1}{2}\end{array}\)
Ta có: \(g( - 1) = - 1;g(1) = 1;g\left( {\frac{1}{2}} \right) = \frac{5}{4}\)
Vậy \(\max g(t) = \max f(x) = \frac{5}{4}\)
Suy ra: \(\max y = \frac{3}{4} + \frac{{\frac{5}{4}}}{4} = \frac{{17}}{{16}}.\)